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Computer simulation of droplets containing 1 molecules (I ~ 1000)in a 
lattice gas shows that the average surface area is proportional to I a'; o' ~ 0.6 
in two and a' = 0.825 in three dirncnsions for small droplets. These exponents 
agree approximately with those in Kadanoff's modification of Fisher's 

droplet model near critical points [~' = (1 +/3)'/35; our T,'T, is 0.4, 0.7, 
and 0.9]. For larger droplets, these exponents change to I/2 (d = 2) and 
2/3 (d = 3), the transition occurring for droplet diameters larger than the 
coherence length and smaller than the critical diameter in the nucleation of 
supersaturated vapors. This latter result rises some doubts on a recent 
nucleation theory of Eggington et al. 

KEY WORDS:  Monte Carlo; lattice gas, surface area; surface tension; 
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1. I N T R O D U C T I O N  

Fisher 's  liquid droplet  model cll is a semiphenomenological  description of 
critical phenomena  which yields the scaling laws ~t~ and agrees surprisingly 

well tz) with experiment  for gases if T ~< Tc �9 Also, it has been applied t3~ to 

calculate the rate at which large droplets are formed in a supersaturated 
vapor  (homogeneous  nucleation).  In  the droplet  model, small liquid droplets 
occur in the gas phase due to the rmodynamic  fluctuations. One essential 
ingredient  of  the model  is the surface exponent  a. This is defined in Fisher's 
model  by: (surface free energy) oc (surface area Sz) oc I o for a liquid droplet 
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Table I.  

K. Binder and D. Stauffer 

Crit ical Exponents in the Droplet  Model ~ 

Small Small Macroscopic 
droplets b droplets ~ droplets 

Droplet surface I ~ l ~ ' tz  ls~ 1 ~ - n  ~'~ 

Droplet volume ! It ~c,l~h I 

Surface tension 1 ~ i - i l s  i ~ 

Surface free energy !o ! o It~-u "a 

"Only powers of/, not of T -  T,, are shown, o = !/83; d -- dimen- 
sionality. 
Fisher's model. 

* Kadanoff's model. 

containing ! molecules. This exponent a is fitted on the measured critical 
indices (we employ his standard notation eta) by cr = I//~3 (Table 1): in three 
dimensions, usually 0.6 .~ ~r ~< 0.67. In a modified interpretation proposed 
by Kadanoft "~l~ and discussed elsewhere, ~S~ the density difference between a 
droplet with 1 molecules and the surrounding medium is assumed to be not 
a constant near T, as in Ref. 1 but to vary as l-t, '6. Then, the droplet volume 
Vz is proportional to p m + ~ ,  the droplet surface Sz oc 1 ~ with ~ still 
given by o --:- l i f t &  The surface tension is assumed in this interpretation to 
be proportional to the density difference and thus proportional to l -a ~; thus 
the surface free energy of  a droplet is proportional to S J  -~/~ w_ F',  as in 
Fisher's interpretation. In Fisher's version, geometric considerations require 
a >/2/3  in three dimensions ((r =~ 2/3 for spherical droplets), a condition 
violated in the lattice gas (Ising model). Instead, in Kadanoff 's picture, the 
same consideration, that S i V i  -2:3 should not vanish for I - ~  ~ ,  gives the new 
relation ~5,~~ 1 + fl >~ 2v [ ~ ( d  --  l)v in d dimensions] and 

1 + / 3  = ( d -  l)u for spherical droplets (1) 

The inequality is valid in the lattice gas for d --= 2, 3, 4, whereas the equality 
sign does not hold for d = 2 and is slightly violated for d = 3. In both models, 
the microscopic surface tension vanishes at Tr but in general not with the 
same power of  Tr - -  T as the bulk surface tension. ~2,s~ It has been unclear 
where the transition lies between the small droplets (microscopic surface 
tension) important for the equation of  state in the droplet model, ct,~-~ and the 
large spherical droplets observable, e.g., as raindrops (bulk surface tension). 
This question is important for the theory of homogeneous nucleation (see 
Ref. 6 for a recent review), since most nucleation theories assumed the 
"critical" droplets to be spherical (large-droplet limit), whereas Eggington 
e t  a L  cn~ assumed nonspherieal droplets for CO., near To (small-droplet limit). 
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Therefore we undertook a Monte Carlo calculation on an IBM 360/91 
computer in order to clarify the following questions for a two- and three- 
dimensional lattice gas: Is the average surface area of a droplet containing / 
molecules proportional to some power of  1, and what, then, is the exponent? 
Does the result agree better with Fisher's or with Kadanoff's interpretation 
of the droplet model? Is there a transition between large and small droplets? 
How does this affect the theory of homogeneous nucleation ? In the following 
section, we describe our mathematical method, in Section 3, its results, and 
in Section 4, the consequences for theories of the equation of state and of  
homogeneous nucleation. 

2. C O M P U T A T I O N A L  T E C H N I Q U E  

The lattice gas ~?; is a simple model of a fluid. Each lattice site is either 
empty or occupied by one molecule. This is the fluid analog to a spin-l/2 
lsing model for ferromagnets, the empty sites corresponding to spin down, 
the occupied sites to spin up. The critical density Pc is reached if half of the 
sites are occupied (zero magnetization): at low temperatures, the density of 
the Jiquid phase is therefore "-~2pc. We assume a simple cubic or square 
lattice in three and two dimensions, respectively, with next-neighbor inter- 
action energy 4J. Then, the critical temperature Tc is reached 17~ at 
J/ksTc ---- 0.222 (d = 3) and J/kBTc ---- 0.441 (d '=  2). The total energy is 

E = Z S.s,s  
i k 

with s, = + 1 for occupied and = - - !  for empty sites; in the sum, k runs 
only over the 4 or 6 next neighbors of sites i. On the computer, we use a 
finite number of  sites up to 2 0 3 = 8 0 0 0 ( d = 3 ) o r 5 0  -~ ~ 2500 (d=- 2), 
employing periodic boundary conditions. In the Monte Carlo calculation, 
suitable configurations of  the systems are choosen by using random num- 
bers. Generating a new configuration, the energy difference AE between the 
old and the new configurations is calculated. If d E  < 0, the new configura- 
tion is taken into account in the average; i f A E  > 0, the transition probability 
e -ne/k.r is compared with some random number; if the probability is greater, 
the new configuration is taken into account in the averaging procedure; 
otherwise, the old configuration is counted once more. By this procedure, 
configurations are choosen with a thermodynamic probability proportional 
to e -ell'st (see Refs. 8 and 9 for details). In some eases, the number of  sites 
was varied to show that the periodic boundary condition introduces a negli- 
gible error only. It has been shown previously ~~ that the periodic boundary 
condition affects the behavior of  the system only very near Tc. We have 
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taken into account up to 10 s configurations (10 min computing time) for a 
single average in Fig. 1. 

If  we were to choose the configurations completely at random, we 
would get a realistic picture of  the lattice gas, but not the behavior of  large 
droplets. For, then, most molecules would be arranged in clusters of radius 
smaller or equal to the coherence length; extremely few droplets with a larger 
radius would occur. Also, it would be very difficult to uniquely define a 
droplet and its surface. Thus, instead, we take into account only configura- 
tions having a droplet consisting of a given number of molecules (occupied 
sites). The droplet surface is defined by a sharp double layer. One layer of  
occupied sites connected by next-neighbor interactions gives the boundary 
of  the liquid region; the adjacent layer of nonoccupicd sites is the boundary 
of  the gas phase. Such a sharp boundary is unrealistic very near Tc ; thus we 
choose T/T, <~ 0.9. (Very near T~, in the interior of the droplet, the density 
is slightly above pc, in the surrounding gas it is slightly below pc �9 In between, 
we expect CH~ a smooth transition, whereas in our calcu!ation, this transition 
region consists of a liquid layer with p == 2p~, and a gas layer with p -- 0; 
this is not realistic.) The chemical potential is fixed to be the potential at 
which bulk gas and bulk liquid can coexist (zero magnetic field); the total 
number of molecules is not fixed: Outside the droplet, but separated from it, 
there can be single molecules or small droplets. Also, inside the droplet, 
small holes occur, enlarging the volume of the droplet (since the number of 
molecules within the droplet is constant); these internal surfaces are not 
added to the droplet surface area. The droplet surface area is evaluated by 
counting for each molecule of the occupied boundary layer of the droplet the 
number of empty sites which are next neighbors of this molecule; then, these 
numbers are summed up for all molecules in the boundary layer, the sum 
being the surface area in units of  a 2 (a = lattice constant). Because of the 
cubic structure of the lattice gas, the energy minimum is reached for a cubic 
droplet and not a spherical one; a cube of 103 ---- 1000 closely packed mole- 
cules has, by our definition, a surface of 6 • 102 == 600a ~ as it should be. 

We start the Monte Carlo calculation with a cube of  molecules (square 
in two dimensions). The sites in the interior of  the cube are labeled with 
index 1 (initally, all these Sites are occupied by molecules, up spins). The 
molecules at the surface of the cube are labeled with index 2. Their nearest 
neighbors with down spins have index 3, and the more remote spins outside 
the droplet have index 4. These indices serve to indicate the local position of 
the droplet surface, given by the double layer of sites with indices 2 and 3. 
Now, we select at random two spins to be reversed, in order to get a new 
configuration of  occupation numbers for the sites in our volume. This choice 
is considered as a trial configuration for our Monte Carlo procedure only if 
the number of  molecules (occupied sites, up spins) within the droplet (indices 
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I and 2) remains constant. This is possible if, e.g., we flip a spin of  index 2 
together with a spin of  index 3. Otherwise, a new choice has to be made. If 
this trial configuration is admitted as a new configuration in the Monte Carlo 
sequence, we have to correct the values of the surface indices at the positions 
of  the flipped spins and at some of their neighboring positions in such a way 
that index I again corresponds to the droplet interior, index 2 to the con- 
nected boundary layer of  occupied places, index 3 to the adjacent empty 
layer, and index 4 to the gas region away from the droplet. Thus the actual 
position of the boundary layer is given by the surface indices 2 and ? .at any 
step of our procedure. Repeating these simple steps at arbitrary ~:-+~. the 
boundary layer is shifted and bent, but not destroyed, since precautions are 
taken to avoid separation of the droplet into two parts, etc. While sites of  
index 2 must be occupied and sites with index 3 must be empty by definition, 
this is not the case for sites with indices i and 4. According to the chosen 
temperature, there also exist some additional droplets in the gas phase (index 
4, but occupied); they are not counted as parts of the droplet. Also in region 1, 
some bubbles (empty sites within the droplet) are allowed; the lowest density 
reached in our calculation for three dimensions is 1.84pc for region 1 
(T /T ,  ----- 0.9). One is not allowed to reverse those spins of index 3 that are 
nearest neighbors to molecules outside the droplet, since the number of 
molecules in the droplet must be kept constant (if one had allowed these 
reversals, molecules outside the droplet would by definition have become 
part of  the droplet, and therefore the condition that there be a constant 
number of molecules within the droplet would have been violated). Essen- 
tially, we thus have taken into account for the surface area fluctuations the 
excluded volume corrections, ~ which means that two droplets cannot be at 
the same place at the same time. ~*-t~ 

Since a factor exp(-energy/kBT) is employed for the probability of  each 
new configuration, at zero temperature, the cube would never change (heavy 
lines in Fig. I); the deviations from this behavior (Fig. I and 2) are due to the 
thermal fluctuations we are interested in. 

3. RESULT~ 

Figure ! gives our results: For two (lower curves) and three (upper 
curves) dimensions, our points give the mean surface area for various droplet 
sizes and temperatures. For small droplets, the average surface area S, is 
proportional to 1 ~ in two and to l ~ in three dimensions. These exponents 
agree much better with Kadanoff's picture Sz oc l"+~x/e~ = 1 ~ (d = 2) and 
S~ = o.~t• (d ---- 3) than with Fisher's picture St or. 1 ~ = ! o.sa (d = 2) and 
S~ =/o.,a• ( d =  3). (We have ~r = i//33; /3 = 1/8, 8 = 15 in two, and 
fl = 0.313 -q- 0.002, 3 = 5.0 -r 0.I in three dimensions, cT,m) 

822/6/x-4 
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Average surface area as a funct ion o f  droplet  size. The  calculated points  are 
connected by the thin lines. 

For larger values of / ,  a gradual transition occurs to simple S, oc psz and 
S~ oc lZ/3 laws. Very near To, such a transition can be expected from 
Kadanoff's picture by discussing the density or the surface tension of a small 
droplet. [For the surface tension argument, we need the "'droplet scaling 
law" (!).] 

Densi ty .  The density difference between a droplet and the surrounding 
medium [or Pdroplet - -  p<(near To)] is proportional to 1 -z/~ very near T< in 
KadanotVs picture. However, our lattice gas has a maximum density 2pc 
(all sites occupied); and since small clusters cannot have holes, only for 1 
greater than some Iz (-~30 for d ---- 3) can the density difference vary as I-1/~. 
For droplet size ! greater than some other boundary lz,  the density within the 
droplet should be constant again and equal to the density of a bulk liquid at 
that temperature. Thus we have a transition from a microscopic cluster to a 
macroscopic raindrop. Very near Tr where the coherence length r is much 
larger than the lattice constant a {we assume (71 r = ( a / 3 ) [ l -  (T/Tc)]-', 
v = 0.64}, we have apart from a factor ,~1, 

(s~,,ll< ll,l<,td - p D l . o o  = (~la) -~/"  (2) 
r i o  derive Eq. (2), we expressed c~) the density and the coherence length in 
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powers of  T, - -  T and then eliminated the temperature.] The density within 
a droplet varies with size very near Tr roughly as 

0 , a ~ o p ~ , t  - t , , ) / f ' ,  = ( t /O -':~ (t~ <~ I <. t.9 (3) 

Matching both expessions at the boundary ! = !~, pdroplet = /9bulk liquid , we 
find 

I~/t, = ( r  'o = ( r  l~ ~ -  3 0 ( r  (4)  

The volume "of a droplet in Kadanoff 's  picture ~5~ is Vz ocP:~l/~'; 
Vl = aaP+t~:~/l~/8. At the transition I --~ L., this volume is therefore 

Vz~ = a31,(r tt+ct,'*~]B*,~ = a3ll(~./a) c'-~,:~ = l l ~  ~ 30r 3 (5) 

using the scaling law 2 -- a = dv for d = 3. In Fig. 1, the transition size 
seems to be proportional to (r '~ or (r '-.'s as extrapolated from the critical 
region. But the factor of proportionality is 100 rather than the 30 to be 
expected from (4) and (5). 

S u r f a c e  Tens ion .  Another argument leads to a transition size 13 
of  the same order of  magnitude as the I, in (4). The surface free energy ~-~.5~ o f  
small droplets is/,'BT I In x [ P; thus the surface tension in Kadanoff 's picture 
equals k B T I l n x l l ~  with l n x o c T c - -  T and 
Sz = $11~ Whereas this microscopic surface tension vanishes linearly in 
T, --  T for fixed droplet size 1, the bulk surface tension for large droplets ~m 
is ;., = y0[! --  (TITs)] "-~ according to the usual scaling laws. Now we assume 
the additional relation (!) for d = 3, which is nearly exact for the three- 
dimensional lattice gas (3 % error). Then, {~ for droplets of radius proportio- 
nal to the coherence length, the microscopic surface tension has the same 
temperature dependence as the bulk one near T, because now 

I - l /a  oc I l n  x i l / c ~  oc (To  - -  T y  = (To  - -  7") z~-I  

Both surface tensions can thus be matched at some 

Microscop.;c surface tension near T~ ---- (keTdDSl) (3~la) -~t l~ l  -c tm (6) 

Bulk surface tension near T, = yo[(3~/a)-t/~] ~ (7) 
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[In (6), D = ( T  - -  T~)/T,J In x I is a constant,  c2~ Equations (6) and (7) match 
at 

Is = ( kaTdDSwo)a (3~ /a )  ~t~ = ( k B T d D S W o )  ~ 3~"~(~/a) '~;~ oc lz (8) 

using 1 + fl = 2v. I f  data  for  Xe or  CO., are used, 1., and la are o f  the same 
order  o f  magnitude;  and both estimates are only order-of-magnitude 
estimates. 

[In two dimensions, very near T~, Eq. (4) reads L.,/It = 0.5(~'a)~/~; 
~ [ a - - - - 0 . 3 T d ( T ~ -  T) ,  whereas no analog of  (8) can be found since the  
droplet  scaling law (1) is invalid for d : :  2 for reasons which are not clear to 
us; perhaps there exist several transition sizes with different temperature 
dependences near T~, and the surface tension might be a nonlinear function 
o f  the density difference. N o  satisfactory solution can be given by us.] 
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Fig. 2. Typical "critical" droplet for the nucleation in a supersaturated vapor. T--~ 
0.7T~, 10 a molecules in the droplet, 20 a sites in the volume. The surrounding volume is not 
fully shown; also, molecules outside the droplet are not shown. The 12 figures are the 
adjacent cuts through the lattice planes of the droplet. 



Monte Carlo Study of the Surface Area of Liquid Droplets 57 

Contrary to these two order-of-magnitude estimates of  the transition 
size, the temperature in our Monte Carlo calculation is not very near Tc ; 
thus Pbulk Uquia is still near 2pr and thus, because of  their limited accuracy, 
we cannot study from our results the variation of  density with droplet size. 
Therefore there is no full agreement between our results and Kadanoff's 
picture. In order to get a clearer picture of  the density within a droplet and 
its variation with size, we need data mucb nearer to Tc : here, our method of 
defining a droplet by a sharp double layer of  occupied and empty sites 
would no longer be accurate. From our present data, we guess that the 
exponents for the average surface area are nearly independent of  temperature 
for both small and large droplets; for small droplets, they agree with 
Kadanoff 's picture: St oc IiI+B},'B~; for larger droplets, they are given by 
Sz or. Ira-t)~ a. The transition between large and small droplets is strongly 
temperature-dependent; it occurs for droplet diameters larger than, but 
proportional to, the coherence length (for d = 3). 

For droplets much larger than the transition size, the surface is pro- 
portional to I ca-l~/a, but the data at T - ~  0 do not match the heavy T -=- 0 
lines in Fig. 1. For, even a flat surface has a finite roughness ml (thickness 
, ~ .  A typical picture is shown in Fig. 2. (Because of the cubic structure of  
the lattice gas, the typical configuration is still a cube and not a sphere for 
d = 3 at these temperatures; in two dimensions, our largest droplets are more 
circular.) With our definition of the surface area, the surface roughness is 
interpreted as an enlargement of  the surface area. In the experimentally 
measured surface tension and surface area, this roughness is already taken 
into account and need not be added to the surface area; therefore the surface 
free energy for these very large droplets shouldbe equal to tide area of a given 
sphere (or cube) multiplied by the measured bulk surface tension. The line 
-I- in Fig. 1 (d = 3, T = 0.4T~) is such an extrapolation of the very large 
droplet behavior (l = 10 a) to the intermediate region around 10"- molecules 
(extrapolated with slope 2/3). We see that there are small deviations, at least 
in three dimensions, the actual surface area is larger than the one extrapolated 
from the bulk behavior. 

4. DISCUSSION 

We need the droplet surfaces in three dimensions for two purposes: To 
calculate an equation of  state cm) of  a real gas, particularly near To, and to 
estimate the nucleation rate in a supersaturated vapor. ~3,s~ In the sums for the 
equation of  state, the important contribution near Tc comes from 1 = 1, 2 .... 
or 1,-~ I t ,  where It = [In x I -x/~ (~/a) 2"5 is the number of  molecules 
whithin a droplet of  size coherence length. ~31 F o r  these small droplets, it 
seems to be safe, according to our data, to assume a simple power law 
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Sz oc 1 o' for the droplet surface. Moreover, our data justify the determination 
of these exponents from the measured critical indices/3 and $ from Kadanoff's 
picture a ' =  1/135, whereas it is dangerous to assume a surface area 
proportional to 12,'a (as inUa--l~). 

For the nucleation in supersaturated vapors, however, the important 
droplet sizes are much larger. If the rate at which macroscopic droplets are 
formed is about one droplet per sec and cm z, then ~3~ we need to know the 
droplet free energy for I ~ 10~1~ (critical size, determined by the maximum of 
the droplet free energy in the supersaturated state; Fig. 2 shows a droplet of 
roughly critical size at T----- 0.7To). This size is greater than the transition 
size/2 ,~ 1021~ between the large-droplet and the small-droplet behavior; only 
for very high nucleation rates (>10  ~~ cm -3 sec -1) or extremely near Tc, the 
critical size is about the transition size or smaller. Eggington e t  al. TM calcul- 
ated cr = 0.635 from the critical indices /3 and g measured in CO., and  
applied this exponent to the nucleation theory near Tc. This procedure now 
seems to us doubtful; it would probably have been better to use the bulk 
exponent 2/3 instead of 0.635 in the surface free energy for the critical 
droplet. Also, one should use for the nucleation theory a bulk surface tension 
with small curvature corrections (cf. Sarkies and Frankel ~16~) instead of a 
microscopic surface tension determined from the equation of state. The most 
essential point of Ref. 3, the discussion of the logarithmic term in the droplet 
free energy and the resulting critical slowing down of the nucleation rate, is 
essentially unaffected by our present results. (Cf. Stillinger. ~151) (For water in 
the atmosphere, T = 0.4T, ,  the bulk surface tension happens to agree with 
the microscopic droplet surface tension, TM and the exponent ~r = lifts is 
just 2/3; thus the results for water near the triple point probably remain 
unchanged by our criticism; in fact, they agree with experiment. TM) It should 
be noted, however, that we calculated only the surface area and not the sur- 
face free energy entering into the nucleation rate, and that the lattice gas is an 
oversimplified model for a real gas; for example, it gives no vibration fre- 
quencies (cf. Ref. 17.) 

Concluding, we guess that it is a good approximation to use Fisher's 
droplet model (with Kadanoff's modification t'~) to evaluate an equation of 
state; but one should not, contrary to Refs. 3 and 14, extrapolate all param- 
eters for the droplet surface found from the equation of state to the much 
larger droplets important in the nucleation of supersaturated vapors. A 
serious drawback of our method, which precludes its application very near 
T , ,  is the sharp double layer used to define the surface. We plan to evaluate 
in a different manner, but also by Monte Carlo calculations, the smooth 
surface between bulk liquid and bulk gas, keeping the surface at its desired 
place by a small gradient in the chemical potential ("gravitational field"). 
(Cf. Ref. 18 for the liquid-solid interface.) Perhaps then a similar method can 
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also be applied to study droplets very near Tc without the unphysical double 
layer. A more detailed report on the present computer results is available 
upon request.C19~ 
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